Journal of Organometallic Chemistry, 133 (1977) 183–186 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STRUKTUR EINES SPIROCYCLISCHEN PHENYLSTIBONSÄUREESTERS

M. WIEBER *, N. BAUMANN, H. WUNDERLICH * und H. RIPPSTEIN

Anorganisch-chemisches Institut der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

(Eingegangen den 1. Dezember 1976)

Summary

The crystal structure of 2-phenyl-4,4,4',4',5,5,5',5'-octamethyl-2,2'-spirobi-(1,3,2- λ^5 -dioxastibolan) has been determined by single crystal X-ray diffraction. The central antimony atom shows slightly distorted trigonal bipyramidal conformation. ¹H NMR and ¹³C NMR spectra are reported and from this point of view the structure of the compound in solution is discussed.

Zusammenfassung

Die Kristallstruktur von 2-Phenyl-4,4,4',4',5,5,5',5'-oktamethyl-2,2'-spirobi-(1,3,2- λ^{5} -dioxastibolan) wurde durch Röntgenstrukturanalyse bestimmt. Das zentrale Antimonatom zeigt dabei eine etwas gestörte trigonal bipyramidale Umgebung. ¹H-NMR und ¹³C-NMR-Spektren werden mitgeteilt und daraus auf die Struktur der Verbindung in Lösung geschlossen.

Einleitung

Vor kurzem berichteten wir über die Synthese cyclischer und spirocyclischer Organostibonsäureester [1]. Im Zusammenhang mit Strukturuntersuchungen an ähnlichen Phosphorverbindungen, bei denen wir erstmals eine quadratischpyramidale Koordination des fünfbindigen Phosphors feststellten [2], erschien es interessant die Kristallstruktur und das NMR-spektroskopische Verhalten von 2-Phenyl-4,4,4',5,5,5',5'-oktamethyl-2,2'-spirobi(1,3,2- λ^{5} -dioxastibolan) (I) zu untersuchen. Dies nicht zuletzt auch deshalb, weil vor kurzem die Kristallstruktur einer entsprechenden Arsenverbindung veröffentlicht wurde [3]. Dieser Verbindung wird eine gestörte quadratisch pyramidale Geometrie zugeschrieben. Strukturuntersuchungen an fünfbindigen Antimonverbindungen (Pentaphenylantimon = tetragonal pyramidal [4], Tetraphenylantimonhydroxid [5], Methoxi-

^{*} Institut für Anorganische Chemie der Universität Düsseldorf.

tetraphenylantimon und Dimethoxitriphenylantimon [6] = trigonal bipyramidal) lassen eine eindeutig bevorzugte Geometrie nicht erkennen.

Kristallstruktur von I

Farblose Kristalle der Verbindung wurden durch Umsetzen von Phenylstibonsäure mit Pinakol [1] und anschliessendes Umkristallisieren aus n-Pentan erhalten. Zur Bestimmung der Gitterkonstanten sowie der anschliessenden Intensitätsdatensammlung wurde ein Kristall in einer Kapillare unter Stickstoff eingeschmolzen und mit monochromatischer Mo- K_{α} -Strahlung auf einem rechnergesteuerten automatischen Vierkreisdiffraktometer (Syntex P2₁) vermessen.

Kristalldaten: SbC₁₈H₂₉O₄ (Molmasse 431.2) kristallisiert monoklin mit den Gitterkonstanten a = 11.111(4), b = 14.445(12), c = 24.421(17) Å, $\beta = 95.46(4)^{\circ}$. V = 3901.6 Å³, Raumgruppe C2/c (C_{2h}^{6}), Z = 8, $D_{ber} = 1.47$ g cm⁻³.

Strukturbestimmung: Es wurden 1244 unabhängige Reflexe bis $2\theta = 35^{\circ}$ vermessen. Das Antimonatom wurde durch direkte Methoden (MULTAN) lokalisiert. Strukturfaktorberechnungen und Fourier-Synthesen ergaben die Struktur, wobei die zuletzt ausgeführte full-matrix least-squares Verfeinerung einen *R*-Faktor von 0.044 bei Verwendung anisotroper Temperaturfaktoren für alle Nichtwasserstoffatome ergab. Die Wasserstoffatome wurden nicht lokalisiert. Tabelle 1 zeigt die wichtigsten Bindungslängen und Bindungswinkel *. Nummerierung der Atome siehe Fig. 1.

Fig. 1.

^{*} Ausführliche Atomkoordinaten sind beim Autor erhältlich.

TABELLE 1

BINDUNGSLÄNGEN IN Å	(Standardabweiheung	0.01 Å)	UND	BINDUNGSWINKEL IN °	(Standardab-
weichung 0.5°)					

Atome	Bindungslänge Atome		Bindungswinkel	
Sb-O(1)	1.95	0(2)აა0(3)	167.4	
Sb-0(2)	1.98	O(1)-Sb-G(4)	118.3	
Sb0(3)	1.98	O(1)-Sb-C(1)	120.7	
SbO(4)	1.95	O(4)-Sb-C(1)	121.0	
Sb-C(1)	2.11	O(2)-Sb-O(1)	83.1	
O(1)-C(10)	1,46	O(2)-Sb-O(4)	91.8	
O(2)-C(9)	1,46	Q(2)-Sb-C(1)	94.4	
O(3)-C(7)	1.45	O(3)-Sb-O(1)	89.6	
O(4)-C(8)	1,45	O(3) - Sb - O(4)	82.6	
C(7)-C(8)	1.57	O(3)SbC(1)	98.2	
C(9)-C(10)	1,62	C(10)-O(1)-Sb	114.9	
C(7) - C(16)	1,48	C(9)-O(2)-Sb	114.0	
C(7)C(17)	1.55	C(7)-O(3)-Sb	113.7	
C(8) - C(12)	1,48	С(8)О(4)	115.4	
C(8)-C(13)	1.60	O(3)-C(7)-C(8)	106.2	
C(9)-C(14)	1,51	O(4)-C(8)-C(7)	107.9	
C(9)-C(15)	1.53	O(2)-C(9)-C(10)	105.1	
C(10) - C(11)	1.49	O(1)-C(10)-C(9)	105.1	
C(10)-C(18)	1.53	C(16)-C(7)-C(17)	-110.1	
C(1)-C(2)	1.41	C(12)-C(8)-C(13)	110.9	
C(2)-C(3)	1.41	C(14)-C(9)-C(19)	113.8	
C(3)C(5)	1.37	C(11)-C(10)-C(18)	112.4	
C(5)-C(6)	1,38	C(2)-C(1)-C(4)	122.7	
C(6)—C(4)	1.39	C(1)-C(2)-C(3)	116.8	
C(4)—C(1)	1.39	C(2)-C(3)-C(5)	120.8	
		C(3)C(5)C(6)	120.8	
		C(4)-C(6)-C(5)	120.7	
		C(1)C(4)C(6)	118.1	

Diskussion. Bindungswinkel (3 mal ca. 120° und einmal 167.4°) und um ca. 0.03 Å verschiedene Sb-O-Bindungslängen zeigen eine leicht gestörte trigonal bipyramidale Umgebung des Antimon-Atoms. Nach dem Winkelkriterium von Holmes [7] beträgt die Störung 23% in Richtung tetragonale Pyramide. Ursächlich dafür könnte der den beiden axialen Sauerstoffatomen O(2) und O(3) gegenüberliegende Benzolkern sein, dessen Ringebene mit der Ebene O(3), O(2), C(1) einen Winkel von nur 2° bildet. Auf der Äquatorebene C(1), O(1), O(4) steht die Ringebene mit 87° fast senkrecht. Die beiden Fünfringe im Molekül sind stark gewellt und die Methylgruppen des Pinakolrestes stehen mit den Diederwinkeln C(11)-C(10)-C(9)-C(14) = -43° und C(17)-C(7)-C(8)-C(12) = -46° fast auf Lücke.

NMR-Spektren von I

¹H-NMR- (in CCl₄, δ gegen TMS int.) und ¹³C-NMR- (in CDCl₃, δ gegen TMS int.)-Spektren wurden bei Raumtemperatur und -50° C aufgenommen. Sie zeigen in diesem Bereich keine Temperaturabhängigkeit. Man findet im ¹H-NMR ein Multiplett für die fünf Ringprotonen bei δ 7.4–8.2 ppm und zwei Singuletts im Intensitätsverhältnis 1 : 1 bei 1.1 bzw. 1.3 ppm. Diese beiden Singuletts zeigen bei 103°C (in Naphthalin) reversible Koaleszenz. Das ¹³C-NMR-Spektrum zeigt

neben dem Phenylkohlenstoffmultiplett bei δ 129.588–135.955 ppm, ein Singulett für die an Sauerstoff gebundenen C-Atome bei δ 77.025 ppm und zwei Signale im Intensitätsverhältnis 1 : 1 bei δ 25.11 und 25.566 für die Kohlenstoffatome der Methylgruppen.

Diskussion: Auf Grund dieser Befunde kann I in Lösung keine eindeutige Geometrie zugeordnet werden. Solange es nicht gelingt durch weitere Temperaturerniedrigung eine Aufspaltung der CH₃- und ¹³C-O-Signale zu erreichen, kann eine starre tetragonal-pyramidale Umgebung des Zentralatoms in Lösung nicht ausgeschlossen werden. Wir neigen aber im Gegensatz zu Goldwhite [3] zu der Ansicht, dass die Aufspaltung der CH₃ und ¹³CH₃ Signale in nur zwei Singuletts und das Vorliegen des ¹³C-O als Singulett, innerhalb des gemessenen Temperaturbereichs, durch eine "low temperature pseudorotation" [7] zustande kommt. Es kommt dabei in einem, verglichen mit der NMR-Zeitskala schnellen, dynamischen Prozess, zum Austausch der äquatorialen und axialen Sauerstoffatome und damit zur Ausmittelung der NMR-Signale der daran gebundenen Kohlenstoff- und Wasserstoffatome. Erhalten bleibt bei diesem Prozess die *cis*- und *trans*-Stellung der Methylgruppen relativ zum Phenylring.

Die Koaleszenz bei 103°C wird auf das Vorliegen einer "high temperature pseudorotation" [7] zurückgeführt, an der auch die Phenylgruppe beteiligt ist. Damit wird die Unterschiedlichkeit der CH₃-Gruppen aufgehoben. Eine freie Aktivierungsenergie ΔG^{\neq} 19.1 kcal Mol⁻¹ wurde für den letztgenannten Prozess berechnet [1].

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt.

Literatur

- 1 M. Wieber und N. Baumann, Z. Anorg. Allg. Chem., 418 (1975) 279.
- 2 H. Wunderlich, D. Mootz, R. Schmutzler und M. Wieber, Z. Naturforsch. B, 29 (1974) 32.
- 3 H. Goldwhite, J. Grey und R. Teller, J. Organometal. Chem., 113 (1976) C1.
- 4 A.L. Beauchamp, M.J. Bennett und F.A. Cotton, J. Amer. Chem. Soc., 90 (1968) 6675.
- 5 A.L. Beauchamp, M.J. Benneit und F.A. Cotton, J. Amer. Chem. Soc., 91 (1969) 297.
- 6 K.W. Shen, M.E. Mc Ewen, N.E. La Placa, S.J. Hamilton und A.P. Wolf, J. Amer. Chem. Soc., 90 (1968) 1718.
- 7 R.R. Holmes, J. Amer. Chem. Soc., (1974) 4143.